International Meeting of Editors and Contributors of Scientific Periodicals in the Field of Dentistry. Salão Nobre da Faculdade de Odontologia de Bauru /USP

The Role of the Scientific Editor & the Impact Factor: An International Vision

Prof. **David Watts** The University of Manchester, UK Editor-in-Chief: *Dental Materials* [Elsevier Science]

Onde está Manchester?

Cumprimentos de Manchester

Molhado e ventoso em novembro

Um de nossos estudantes anteriores !

MANCHESTER 1824

Sir J.J. Thomson, (1856 - 1910) born in Cheetham, Manchester. discoverer of the electron, in 1897.

Como podemos nós melhorar nossos jornais científicos?

Consider first: the impact factor [IF]
 Then: the role of the scientific editor & peer-review
 Then: What is scientific explanation?
 & Awareness of current research trends.

The ISI® Journal Citation Reports (JCR®) impact factor has moved in recent years ... *from* an obscure bibliometric indicator to become the chief quantitative measure • of the quality of a journal ♦ its research papers **•** the researchers who wrote those papers ◆ & even the institution in which they work.

Impact factor is <u>not</u> an absolute or fully reliable measure of quality.

But some agencies & individuals treat **IF** ...**as if** it were the only measure of quality ...

The definition of (JCR®) Impact Factor

- *For each journal*, it is a ratio: Numerator / Denominator
- Numerator = the frequency with which articles are quoted*in the 2 years following their publication.
- Denominator = the total number of articles published

* **Quoted** = **cited** in the reference list of a paper in any appropriate research journal.

Generalised citation *versus* time curve for a research paper

Time after publication (Years)

Subject variation in impact factors (eg. for 1998)

Impact factors & number of authors / paper

Impact Factors & type of journal /paper

Impact factor fluctuation vs. Journal Size

Impact factor fluctuation vs. Journal Size

Impact factor fluctuations due to the measurement window

Published vs. Corrected Impact Factors

% published IF greater than corrected IF

Limitations of Impact Factors

Linde, A (1998): On the pitfalls of journal ranking by impact factors. *Eur J. Oral Sci* 106, 525-526

IFs do not count the influences of research on:
clinical practice
Health care programmes
Industrial applications
Contributions to other areas of science

2. The role of the scientific editor

& the Peer-Review Process

Key factors for scientific editors of Dental Journals

The breadth & depth of his/her scientific knowledge

- ◆ Understanding the language & concepts of different disciplines.
- ◆ Familiarity with inter-disciplinary & cross-disciplinary research.
- ◆ Understanding the overall structure of scientific knowledge.
- ◆ Self-awareness of major gaps in his /her knowledge.
- ◆ Research experience inside & outside dental schools.
- The breadth & depth of his/her past & current contribution to scientific research.
- Personal qualities
- Organisational ability
- Range of contacts

"If I have seen further than others, it is by standing on the shoulders of giants." — Isaac Newton

Composition of the Editorial Board

- People that the Editor(s) can work with, & vice versa.
- People that contribute a breadth & depth of specialist knowledge.
- People who have a range of contacts.
- An international distribution.
- An age /experience distribution.

The Peer Review Process*

*The assessment by an expert of material submitted for publication.

A method of evaluation since the time of Aristotle.

The Philosophical Transactions of the Royal Society was the first journal to formalise the process.

The Peer Review Process

The referee is at the heart of science: "...the linchpin about which the whole business of science is pivoted".
Scientific hypotheses or statements are largely ignored until published in a peer-reviewed journal.

"Peer review is to science what democracy is to politics. It's not the most efficient mechanism, but it's the least corruptible".

Sir Peter Lachmann (2002)

President: *The Academy of Medical Sciences*

Peer review cannot guarantee the correctness of results

The Aims of Peer-Reviewing

To prevent an author making unjustified or incorrect claims based on minimal results. To identify instances of plagiarism, where feasible. **To ensure that:** ◆a consistent and appropriate methodology is used. & recent, reputable work in the area is correctly referenced & acknowledged.

Problems identified by reviewers & editors

Authors using multiple submissions.
Fragmenting studies into 'minimum publishable units'.
Plagiarism (is it increasing?)
Fraud (a rare phenomenon?)

Pre-reviewing (pre-screening) of manuscripts.

An initial reading of incoming manuscripts (by the Editorial team) can identify unsuitable manuscripts:

- ◆ Those outside the scope of the journal.
- ◆ More suitable for a different journal.
- ◆ Where the scientific quality /originality is low.
- A swift return of the paper is more helpful for authors.
 It saves the energies of reviewers.

The main motivations & influences of reviewers

Considered to be an academic duty.
A general interest in the subject
A desire to know latest developments.
Perceived as a honour by younger scientists & confirmation of their standing.

Obstacles identified by reviewers

Difficult to understand badly written papers.

Encouraging participation of reviewers

Ask referees to review only relevant papers.
 Maintain a suitable database

Set limits on the number of times they will be asked to review.

Share referee reports among reviewer-pairs.

- Provide a personalised service.
- Allow flexibility of response.
- Give the referee recognition.

Online reviewing

This requires printing PDF files (or reading on-screen).

Creating detailed comments is difficult.

Easier to give an overall assessment.

Easier to ignore email requests!

Blind, Double-Blind & Open Refereeing.

Double-blind reviewing does not really work!

Editors as mentors to authors?

Good when this can happen!But cannot do this for all!

<u>What is the #1 reason why some biomaterials papers</u> are *rejected* by journals?

- There is <u>no</u> scientific hypothesis formulated & tested.
 NB Theory is very important.
- **Other Reasons**
- The scientific methodology is flawed.
- The writing is unclear and/or incomplete.
- The English grammar & style has many flaws.
- The paper is just a "product comparison" not related to chemical /structural differences between test groups.

The work is not sufficiently original – or does not interact with previous work (poor scholarship).

Challenges for new researchers

Appreciation of what has already been achieved
In the dental research literature
In the basic science literature
Focus upon an original research hypothesis
Value of model systems.

Joined-up interdisciplinary science: for example: Visible Light Polymerisation * * Chemistry **Biomaterials Science Physics** Light **Photoinitiator** activation CH₃ H₃C .CH₃ **Polymerisation-Process** activation **Light-cured** Monomer **Composite material Clinical deployment**

kinetics = f (time, temperature & light intensity)

3. What is "scientific explanation"?

With special reference to biomaterials science & biomechanics in dentistry...

The importance of physico-chemical theory for hypothesis formation ...

Philosophical Concepts in Physics

THE HISTORICAL RELATION BETWEEN PHILOSOPHY AND SCIENTIFIC THEORIES

JAMES T. CUSHING

There are different types of explanations answering different kinds of questions – about life, the universe and everything ...

•Religious explanations... [ultimate causes & reasons]

Scientific explanations...
 [secondary /proximate causes]

One kind of explanation does not *logically* exclude another kind.

The Cavendish Physics Laboratory, Cambridge University

gateway inscription
of Psalm 111:2
by the first Cavendish Professor,
James Clerk Maxwell (1831-79)

"Magna opera Domini exquisita in omnes voluntates eius".

"Great are the works of the LORD; they are pondered by all who delight in them".

phenomena [eg: sun /moon /stars]

scientific quest ...

underlying **causes** & **mechanisms**

Science – considered as: Discovering Patterns in Complexity –

in material & molecular behaviour

Explanation in terms of a hierarchy of levels

Social dynamics: human population behaviour
 Macroscopic :clinical & experimental observations
 Microscopic behaviour:

- Optical / confocal
- SEM / TEM / Scanning probe AFM / 3D Tomography
- Cellular-scale phenomena
- Meso-scale behaviour & modelling: 1 1000 nm [or 1- 100 µm]. eg. random disordered materials
- Nano-scale imaging & modelling : 1-100 nm
- Molecular dynamics & spectroscopy : 0.1 nm
- Atomic & Nuclear behaviour

Hierarchical organization of biological structures

hydrogen

Four fundamental physical forces

This illustrates the importance of scientific explanation in terms of a hierarchy of explanatory paradigms.

What holds the nucleus together?

- protons: positive electric charge
- neutrons: no charge
- ☐ like charges *repel*
- what holds the nucleus together? new force!
- new force must be strong to overcome electrostatic repulsion, but short-ranged

What are the basic physical forces of nature?

These are *shrinking* in number ...

Gravitation
Electromagnetism
Weak nuclear force
Strong nuclear force

History of Unification

Two principal theories of fundamental physics

 General relativity – explains gravity, & for rapidly moving objects.
 Quantum Mechanics – for atoms and fundamental particles

This may seem a long way from dentistry ...

The necessity of research collaboration

- Across disciplines
 Across national & linguistic frontiers
 Interactions made feasible by the internet & WWW
- Resources such as: PubMed, Web of Science, Elsevier's Science Direct ...

4. <u>Awareness of Current Research Trends</u>: eg. Nanotechnology Overview

Biomimetics/Nanotechnology Overlap

10⁻¹⁰ m <

 $10^{0} \, {\rm m}$

The Complex World of Nanotechnology

Structural Materials

- Polymers and Composites
- Refractory Ceramics
- Adhesives

Spacecraft Materials Space Durable Polymers Shielding Materials

- MF composites

Advanced Materials

- Computational
- Research
- Smart Materials
- Nanotechnology

Applications of Nanotechnologies

Polymer Film Matrices: Flexible Flat Panel Displays 3-Dimensional Storage Devices Radiation Shields Remote Sensing Devices Reusable Paper

Polymer Fiber Matrices: Conducting Fabrics Infrared Radiation Protection UV-Sensors Computer Garments Reversible Coloration of Fabrics

Limits of Nanotechnology

Xenon on Nickel (110)

Iron on Copper (111)

Cesium & Iodine on Conner (111)

Carbon Monoxide on Platinum (111)

 C_{60} on Copper

Carbon Nanotube Technology

Biomimetics/Nanotechnology Disciplines

Nano Particles ²⁹Si-NMR analysis

perfect, highly condensed siloxane

lower degree of condensation

Mallan Markan and Markan Ma

Size of Nano Particles by X-ray diffraction

Obrigado para sua atenção ...

Appendix

Scientific Writing

some suggestions for beginning scientific authors ...

Writing – overview of topics

Style

- Perfectionism is your enemy not your friend
- Getting started
- There is no such thing as writing-up
- Bibliography and technical issues

Which style do scientific readers prefer?

- Aim: to transmit information accurately and economically
- Why do so many scientists make their writing so unreadable?
- There are many excuses, but a formal or "correct" style does not have to be unreadable

Excuses for ghastly writing

- It would be thrown straight back'
- 'My boss wouldn't have it'
- Editors insist that you write passively and impersonally'
- You must make your work sound impressive'

Owning a good style

Read books on the subject, eg

Kirkman, John (1992). Good Style
Luey, Beth (1987). Handbook for Academic Authors
O'Connor, Maeve (1991). Writing Successfully in Science
Self-consciously imitate the style of good papers you have read.

Style as choice

Good journalists can write for both serious and popular newspapers.
Choose an appropriate style within the thesis/paper genre
Sloppiness is never appropriate
Clarity and informality are not equivalent

Choices and variety: review

Sentences:

- short vs long
- simple vs complex

Vocabulary:

- short/long
- ♦ familiar/unfamiliar
- non-technical/technical

Phrasing:

- idiomatic vs "scientific"
- direct vs verbose

Verb forms

- active vs passive
- personal vs impersonal
- ♦ imperative vs indicative

Paragraphing

headed sections vs paragraphs

Choices and variety

- Sentence length and complexity
- Weight and familiarity of vocabulary
- Jargon: a mathematical issue?
- Excessive pre-modification:
- **Tense and voice**
- Mathematics is still English: punctuate formulas as if they were text
- **Consider carefully the use of "I", "we" and "you"**
- If you are a native English speaker, remember that your readers may not be
- If you are not a native English speaker, it is probably best to draft and write in English, rather than translating
- Variety is good!

The major reason for not completing a thesis
Not the same thing as aiming to do well
Insecurity and personal commitment to success are normal and natural
Good enough is good enough!

Do a quick draft or section headings
Very easy to do in WORD
Perhaps write bullet point slides first

Finishing on time

There is no such thing as writing-up, only writing
Start writing your thesis on day 1
Little and often
Stop in the middle of a sentence
Accept writing blocks as normal and don't get into a vicious circle of anxiety

<u>Bibliography</u>

- Good bibliography is part of good scholarship
- Put every paper that you read into your bibliography
- Keep careful bibliographic details of papers read and get them right
- **Use** *Endnote*

Conclusion

- Writing is difficult
- Writing takes time
- **When done well, writing is fun**
- Whatever you do next, writing is useful